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An improvement of the Stokesian Dynamics method for many-particle systems is
presented. A direct calculation of the hydrodynamic interaction is used rather than
imposing periodic boundary conditions. The two major difficulties concern the ac-
curacy and the speed of calculations. The accuracy discussed in this work is not
concerned with the lubrication correction but, rather, focuses on the multipole expan-
sion which until now has only been formulated up to the so-called FTS version or the
first order of force moments. This is improved systematically by a real-space multipole
expansion with force moments and velocity moments evaluated at the centre of the
particles, where the velocity moments are calculated through the velocity derivatives;
the introduction of the velocity derivatives makes the formulation and its extensions
straightforward. The reduction of the moments into irreducible form is achieved by
the Cartesian irreducible tensor. The reduction is essential to form a well-defined lin-
ear set of equations as a generalized mobility problem. The order of truncation is not
limited in principle, and explicit calculations of two-body problems are shown with
order up to 7. The calculating speed is improved by a conjugate-gradient-type iterative
method which consists of a dot-product between the generalized mobility matrix and
the force moments as a trial value in each iteration. This provides an O(N2) scheme
where N is the number of particles in the system. Further improvement is achieved
by the fast multipole method for the calculation of the generalized mobility problem
in each iteration, and an O(N) scheme for the non-adaptive version is obtained. Real
problems are studied on systems with N = 400 000 particles. For mobility problems
the number of iterations is constant and an O(N) performance is achieved; however
for resistance problems the number of iterations increases as almost N1/2 with a high
accuracy of 10−6 and the total cost seems to be O(N3/2).

1. Introduction
The microstructure of suspensions is governed by the hydrodynamic interactions

among particles immersed in a viscous fluid, which is modelled using the Stokes
approximation, and have attracted much attention from researchers in physics and
chemical engineering. The hydrodynamic interactions have a long-range nature vary-
ing as 1/r, where r is distance measured from a particle, and further they have a
many-body feature, that is, they must be the solution of a boundary-value problem on
the surface of all objects in the system. Therefore, analytical approaches are difficult.
In fact, even for rigid spherical particles, the exact solution has been obtained only
for two-body problems (Jeffrey & Onishi 1984); of course, this is partially because the
symmetry of the geometry of surfaces for two-body problems is much simpler than
that on systems with three or more particles. Therefore, numerical approaches have



232 K. Ichiki

an important role in investigations of such many-body problems. In this context, the
Stokesian Dynamics method was developed (Brady & Bossis 1988). The Stokesian
Dynamics method is based on Faxén’s law and the multipole expansion to obtain
the so-called far-field mobility matrix which includes the effect of only low orders
of force moments. In addition, the lubrication correction is introduced with the help
of the exact solution of the two-body problem. The method gives us very accurate
results for particle concentrations from dilute to dense limits.

Many-body problems under the Stokes approximation have two different forms – a
finite number of particles in an unbounded fluid and in infinite number of particles
using periodic boundary conditions. The difference causes a qualitative change in
the behaviour of particles: with a constant force applied, in an unbounded case the
particles fall faster as the separation among particles is smaller, while under periodic
boundary conditions they fall slower as the concentration of particles is more dense.
However the governing equation – the Navier–Stokes equation under the assumption
of zero Reynolds number – is linear and the same for both cases, and we could study
the problems within the same framework where the appropriate Green function for
each situation is used. The Stokesian Dynamics method is one such framework;
Durlofsky, Brady & Bossis (1987) describe unbounded cases, and Brady et al. (1988)
consider periodic boundary conditions. Over ten years have passed since the method
was developed, and we are now recognizing two major difficulties with it. One is
the limitation of its approximation to the so-called FTS version where only forces,
torques and stresslets are considered in the multipole expansion; higher versions were
not formulated. The other is that it is a very large and time-intensive calculation
which restricts the size of the system that can be simulated to a few hundred particles.

The aim of this paper is to establish a general formulation as a framework for
Stokes flows, which can handle problems with as much accuracy as required with
less cost of the calculation and without the need for artificial assumptions. We try to
formulate such numerical schemes in as simple a manner as possible; this simplicity
gives us a good perspective of the physics and easy extensions for various applications.

In this paper, we study a system with a finite number of rigid spherical particles in
an unbounded fluid where Brownian motion is negligible, that is, the particle Péclet
number is infinite. These problems attract less interest than the problems with periodic
boundary conditions. However, this does not mean that the problems are solved;
interesting problems remain, for example, breakup of sedimenting agglomerates of
particles in a fluid (Nitsche & Batchelor 1997) and dispersion by shear flows (Kao &
Mason 1975). Because the main purpose of this paper is to establish the formulation
and implementation of numerical schemes, the applications for these phenomena are
outside the scope.

Though the lubrication correction is one of the main features of the traditional
Stokesian Dynamics method, we do not consider it in this paper. This is because the
lubrication correction is an approximation without theoretical justifications for more
than two-body systems, and here we aim to establish a framework without unclear
assumptions. Although we do not specifically discuss the lubrication correction in
this paper, it can be added into this formulation if desired (see § 3.1 for details).

The practical goal of this paper is to improve the accuracy and the calculating
speed of the method by Durlofsky et al. (1987). The improvement in the accuracy is
achieved by a multipole expansion in real space with the proper reduction into the
moments which contain only independent elements; we derive a generalized mobility
problem relating the force moments to the velocity moments for an arbitrary order of
the truncation. The velocity moments are calculated through the velocity derivatives;
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this makes the formulation and the extensions straightforward. The improvement
in the speed is achieved by iterative methods which are widely used for problems
with sparse matrices. Further improvement in the speed is also obtained by the fast
multiple method (FMM) developed by Greengard & Rokhlin (1987). The formulation
of the FMM in this paper is rather different from the original and is an extension of
the multipole expansion for the improvement in the accuracy. We utilize only a plain
iterative method and a non-adaptive version of FMM; the preconditioning techniques
for iterative methods and the adaptive scheme for the FMM are not discussed here
and there is room to improve the present formulation using these techniques.

Because the present formulation is general, the extensions are straightforward.
We could extend this formulation to problems with periodic boundary conditions,
replacing the Green function from the Oseen tensor by the tensor with the Ewald
summation (Beenakker 1986 and Brady et al. 1988). Using the proper reduction of
the moments, we could also extend this formulation to systems of non-spherical
objects. An extension to non-rigid objects could be done by including the double
layer potential. Because the formulation does not utilize any special properties of
hydrodynamics, this could be also the framework for other problems, such as Laplace
problems, linear elastic problems, gravitational systems, and vortex dynamics.

Finally, we comment on the difference of the present formulation from other
works. Regarding the improvement of the accuracy, Mazur & van Saarloos (1982)
developed the multipole expansion in Fourier space. Replacing the Fourier integral by
the Fourier series, Ladd (1988) implemented the formulation for periodic boundary
conditions. While the present formulation can be recognized as their real-space
version, there is a difference: Mazur & van Saarloos (1982) write the relation between
moments formally, and Ladd (1988) implemented that formulation, that is, they
treat the moments directly. In our formulation, we calculate the velocity moments
through the velocity derivatives. As a result, there are no harmonics or trigonometric
functions.

Regarding the improvement of the speed, Sangani & Mo (1996) have applied the
FMM to Stokes flows under periodic boundary conditions based on their formulation
previously given in Mo & Sangani (1994); their formulation is based on an expan-
sion using harmonic functions. In the present formulation of the FMM, instead of
harmonic functions we use an extension of the multipole expansion for the accuracy.
Although the spherical harmonics have an advantage for systems with a spherical
symmetry, the advantage could be a restriction for systems without such symmetry.

In § 2, we reformulate the multipole expansion and derive a generalized mobility
problem. This gives us a systematic improvement on the accuracy of the Stokesian
Dynamics method. We demonstrate this for two-body problems. In § 3, we describe
efficient numerical schemes – an O(N2) scheme by an iterative method, and an O(N)
scheme by the fast multipole method. The performance of these schemes is demon-
strated in § 4, first for a single calculation of a generalized mobility problem which
appears in each iteration in the solution of the boundary condition of the physical
problems, and second for the physical mobility and resistance problems.

2. Multipole expansion
In this section, we reformulate the multipole expansion method procedure for the

hydrodynamic interactions among rigid spherical particles in Stokes flows and give
the generalized mobility problem which is an extension of the grand mobility problem
in the original Stokesian Dynamics method.
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2.1. Expansion of the velocity field

The velocity disturbance v(x) caused by rigid particles is written in terms of the
so-called single-layer potentials (Ladyzhenskaya 1969) as

vi(x) = ui(x)− u∞i (x) = − 1

8πµ

N∑
α=1

∫
Sα

dS(y) Jij(x− y)fj(y), (2.1)

where N is the number of particles, Sα is the surface of particle α, u is the fluid
velocity, u∞ is the velocity in the case without particles, µ is the viscosity of the fluid,
f(y) is a force density on the surface y, and J(r) is the Oseen tensor defined by

Jij(r) =
1

r

(
δij +

rirj

r2

)
. (2.2)

We adopt the Einstein convention for repeated indices throughout this paper. We can
expand y on the right-hand side of (2.1) at the centre of particle xα as

vi(x) =

N∑
α=1

p′∑
m=0

J(m)
ij,k...(x− xα)F(m)

j,k...(α), (2.3)

where p′ is the order of truncation (discussed in §2.4 in detail), F(m)
j,k...(α) is the force

moment of particle α defined by

F(m)
j,k...(α) = −

∫
Sα

dS(y) (y − xα)mk...fj(y), (2.4)

and J(m)
ij,k...(r) is the derivative of the Oseen tensor defined by

J(m)
ij,k...(r) =

1

8πµ

1

m!
[(−∇)mk...Jij](r). (2.5)

The force Fi, torque Ti, and stresslet Sij are related to the zeroth-order and the
first-order force moments as

Fαi =F(0)
i (α), (2.6)

Tα
i = εijkF(1)

k,j(α), (2.7)

and

Sαij = 1
2
{F(1)

i,j (α) +F(1)
j,i (α)− 2

3
δijF(1)

k,k(α)}. (2.8)

The inverse relations are given by

F(0)
i (α) = Fαi , (2.9)

F(1)
i,j (α)− 1

3
δijF(1)

k,k(α) = 1
2
εjikT

α
k + Sαij . (2.10)

2.2. Boundary conditions

Boundary conditions for the velocity on the surface of the particles are satisfied by
f in (2.1) or F in (2.3). In order to specify all elements of F in (2.3), we need
the same number of boundary conditions on the velocity. There are, at least, three
approaches – the boundary collocation method, the method using velocity derivatives,
and the method using velocity moments.

In the boundary collocation method (Gluckman, Pfeffer & Weinbaum 1971), we
directly apply the boundary conditions on a finite number of points on the surface
called the collocation points. Therefore, only (2.3) is required to apply the boundary
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conditions. While this approach is straightforward, it is not suitable for dynamic
problems where the configuration is changing. This is because the results of the
boundary collocation method are sensitive to the choice of collocation points and the
scheme may fail for some cases. An alternative is to consider velocity derivatives V
at the centre of the particle defined by

V(n)
i,l...(x

α) =
1

n!
[∇nl...vi](xα). (2.11)

However, the velocity derivativesV have two disadvantages: the symmetry is different
from that of the force moments F, and the velocity derivatives for the ‘self-part’
becomes singular in the expansion (2.3). The former causes a difference between the
numbers of given and unknown parameters to solve, and then the problem may be
ill-defined. The latter singularity has to be avoided to obtain the regular solution.

As yet another approach, we introduce velocity moments U defined by

U(n)
i,l...(α) =

1

4πa2

∫
Sα

dS(y) (y − xα)nl...vi(y), (2.12)

where a is the radius of the particles. The velocity moments U are more complicated
than the velocity derivatives V, but the two difficulties are removed. The velocity at
the surface is given by v(y) = U α +Ωα× (y−xα) +E α · (y−xα), where U α, Ωα, and E α

are the translational velocity, the angular velocity, and the rate of strain for particle
α relative to the imposed flow u∞. Therefore, zeroth-order and first-order velocity
moments are written as

U(0)
i (α) = Uα

i , (2.13)

and

U(1)
i,j (α) =

a2

3
(εikjΩ

α
k + Eα

ij), (2.14)

or equivalently

Ωα
i =

3

2a2
εijkU(1)

k,j(α), (2.15)

Eα
ij =

3

2a2
{U(1)

i,j (α) +U(1)
j,i (α)}. (2.16)

If we apply the surface integral in (2.12) to (2.3), the linear set of equations relating
the velocity moments and the force moments are obtained as

U(n)
i,l...(α) =

N∑
β=1

p′∑
m=0

M(n,m)
i,l...;j,k...(α, β)F(m)

j,k...(β), (2.17)

where

M(n,m)
i,l...;j,k...(α, β) =

1

4πa2

∫
Sα

dS(y)(y − xα)nl... J(m)
ij,k...(y − xβ). (2.18)

We call (2.17) or its abbreviated form

U =M·F (2.19)

the generalized mobility problem and the matrix M the generalized mobility matrix.
In the following, for simplicity we often omit indices and arguments in this way.

To solve (2.19), we split the velocity moments U into two parts – a self-part Us and
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a non-self-part U′ – as

U =Us +U′, (2.20)

where a prime denotes the non-self-part. This is becauseJ is much easier to calculate
than M. The self-part Us is written as

Us =Ms ·F, (2.21)

where the self-part of the mobility matrix Ms is given by

Ms(n,m)
i,l...;j,k... =M(n,m)

i,l...;j,k...(α, α) =
1

4πa2

∫
|r|=a

dS(r)rnl... J(m)
ij,k...(r). (2.22)

It is shown in Appendix A that Ms(n,m) has the following properties:
(i) Ms(n,m) is non-zero only when n and m are both odd or both even;

(ii) Ms(n,m) is zero for m > n+ 2.
The explicit forms for the zeroth order and the first order are given as

Ms(0,0)
i;j =

δij

6πµa
, (2.23)

and

Ms(1,1)
i,l;j,k =

1

60πµa
[4δijδkl − δikδjl − δilδjk]. (2.24)

For the non-self-part, it is convenient to consider the relation between velocity
moments U′ and velocity derivativesV′. The non-self-part of the velocity derivatives
V′ is defined by

V′(m)
(α) =

1

m!
[∇mv′α](xα), (2.25)

where the non-self-part of the velocity disturbance caused by particles β 6= α is given
by

v′αi (x) =
∑
β 6=α

p′∑
m=0

J(m)
ij,k...(x− xβ)F(m)

j,k...(β). (2.26)

To obtain the relation between V′ and U′, we expand the velocity v′α at the centre
xα as

v′αi (y) =
∑
m=0

V′(m)
i,k...(α)(y − xα)mk.... (2.27)

Applying the surface integral, we obtain the non-self-part of the velocity moment for
a particle α in terms of the velocity derivatives as

U′(n)i,l...(α) =

n+2∑
m=0

V′(m)
i,k...(α)

1

4πa2

∫
Sα

dS(y)(y − xα)n+ml...k.... (2.28)

The explicit relations up to second order are

U′(0)
i =V′(0)

i +
a2

3
V′(2)

i,jj , (2.29)

U′(1)
i,k =

a2

3
V′(1)

i,k +
a4

5
V′(3)

i,kjj , (2.30)

U′(2)
i,kl =

a2

3
δklV′(0)

i +
a4

15
(δklV′(2)

i,jj + 2V′(2)
i,kl) +

4a6

35
V′(4)

i,kljj . (2.31)
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Three remarks can be made pertaining to (2.28). First, only even (odd) m are
required when n is even (odd), because the integral on the right-hand side is a linear
combination of Kronecker’s delta (see Appendix A). Second, the upper limit of the
m-summation comes from the biharmonic nature of v,

∇2∇2v = 0. (2.32)

Therefore, the relation (2.28) gives the exact transformation from V′ to U′. The fact
that the upper limit of the summation of m in (2.28) is not n but n + 2 means that

the finite-size effect is taken into account in U′(m)
by the trace of V′(m+2)

. The final
remark concerns the incompressibility

∇ · v = 0. (2.33)

The velocity derivatives satisfy V′(n)i,ij... = 0 for n > 1. On the other hand, the similar
condition for the velocity moments is required only at the first order, that is,

U′(1)
i,i = 0, (2.34)

and U′(n)i,ij... 6= 0 for n > 2 in general. The terms in U′(n)i,ij... always contain non-zero

velocity derivatives such as V′(n)j,iik... 6= 0 for n > 2. Therefore, we do not need to
consider the reduction of the velocity moments due to the incompressibility on orders
n > 2.

2.3. Reduction of moments

In resistance problems, for example, where particle velocities are obtained from the
applied forces, we solve the generalized mobility problem (2.19) for the force moment
F using the velocity moment U. Even in mobility problems, higher elements of
the force moments are unknown, while those of the velocity moments are given
from the rigidity of the particles (see § 2.5 for details). The elements of force and
velocity moments are not independent of each other as we see in (2.34), and the
linear set of equations (2.19) is ill-defined. To obtain the right solution, we need to
reduce the equations to those relating the irreducible moments whose elements are
all independent. The reduction is related to the nature of the velocity field itself –
the incompressibility and the biharmonic nature – as was discussed in § 2.2. There is
another dependence among elements of the moments from the nature of spherical
particles. We discuss only the velocity moments U here, but the following discussion
is applicable for the force moments F as well.

For velocity moments U(m)
i,l..., interchange of any two indices on l . . . makes no

difference. From this property, the independent number of elements at mth order
becomes (m+ 1)(m+ 2)/2. We call the form of this reduction the ‘symmetric form’
(see table 1).

From the definition of the moments, the higher rank depends on the lower rank in
the following way:

U(n+2)
j,ssk... = a2U(n)

j,k.... (2.35)

To reduce this dependence, it is convenient to introduce the irreducible tensor which
is symmetric and traceless. The reduction for a p-rank tensor Api... is given by Damour
& Iyer 1991 as

Â
p
i... =

[p/2]∑
k=0

a
p
kδ(i1i2δi3i4 . . . δi2k−1i2kA

p
i2k+1 ...ip)s1s1 ...sksk

, (2.36)
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Order m Full form Symmetric form Irreducible form

0 U(0)
x ,U(0)

y ,U(0)
z U(0)

x ,U(0)
y ,U(0)

z Û(0)
x , Û(0)

y , Û(0)
z

1 U(1)
x,x,U(1)

x,y ,U(1)
x,z U(1)

x,x,U(1)
x,y ,U(1)

x,z −a, Û(1)
x,y , Û(1)

x,z

U(1)
y,x,U(1)

y,y ,U(1)
y,z U(1)

y,x,U(1)
y,y ,U(1)

y,z Û(1)
y,x, Û(1)

y,y , Û(1)
y,z

U(1)
z,x,U(1)

z,y ,U(1)
z,z U(1)

z,x,U(1)
z,y ,U(1)

z,z Û(1)
z,x, Û(1)

z,y , Û(1)
z,z

2 U(2)
·,xx,U(2)

·,xy ,U(2)
·,xz U(2)

·,xx,U(2)
·,xy ,U(2)

·,xz −b, Û(2)
·,xy , Û(2)

·,xz
U(2)
·,yx,U(2)

·,yy ,U(2)
·,yz −c,U(2)

·,yy ,U(2)
·,yz −c, Û(2)

·,yy , Û(2)
·,yz

U(2)
·,zx,U(2)

·,zy ,U(2)
·,zz −c,−c,U(2)

·,zz −c,−c, Û(2)
·,zz

3 U(3)
·,xxx,U(3)

·,xxy,U(3)
·,xxz U(3)

·,xxx,U(3)
·,xxy,U(3)

·,xxz −b,−b,−b
U(3)
·,xyx,U(3)

·,xyy,U(3)
·,xyz −c,U(3)

·,xyy,U(3)
·,xyz −c, Û(2)

·,xyy, Û(2)
·,xyz

U(3)
·,xzx,U(3)

·,xzy,U(3)
·,xzz −c,−c,U(3)

·,xzz −c,−c, Û(2)
·,xzz

U(3)
·,yxx,U(3)

·,yxy,U(3)
·,yxz −c,−c,−c −c,−c,−c

U(3)
·,yyx,U(3)

·,yyy,U(3)
·,yyz −c,U(3)

·,yyy,U(3)
·,yyz −c, Û(2)

·,yyy, Û(2)
·,yyz

U(3)
·,yzx,U(3)

·,yzy ,U(3)
·,yzz −c,−c,U(3)

·,yzz −c,−c, Û(2)
·,yzz

U(3)
·,zxx,U(3)

·,zxy,U(3)
·,zxz −c,−c,−c −c,−c,−c

U(3)
·,zyx,U(3)

·,zyy ,U(3)
·,zyz −c,−c,−c −c,−c,−c

U(3)
·,zzx,U(3)

·,zzy ,U(3)
·,zzz −c,−c,U(3)

·,zzz −c,−c, Û(2)
·,zzz

Table 1. Elements of the moments in three forms – ‘full’, ‘symmetric’, and ‘irreducible’. The reduction
denoted by −a is of the incompressibility Ui,i = 0. The reduction denoted by −b and −c are of the
irreducibility and the symmetry on k . . . in Ui,k... respectively. The first index on the moments with
m > 2 is omitted because they are the same.

where

a
p
k = (−1)k

p!

(p− 2k)!

(2p− 2k − 1)!!

(2p− 1)!!(2k)!!
, (2.37)

and n!! means n(n− 2)(n− 4) . . . 3× 1 for odd n and n(n− 2)(n− 4) . . . 4× 2 for even n,
and 0!! = 1. The parentheses around the indices in (2.36) indicate the symmetrization
for the indices. For example, we have the following relations for p = 2 and 3:

Â2
ij = A2

(ij) − 1
3
δijA

2
ss, (2.38)

and

Â3
ijk = A3

(ijk) − 1
5
(δijA

3
(kss) + δjkA

3
(iss) + δkiA

3
(jss)). (2.39)

For the moments in our case, the indices are symmetric by definition, so that we need
not consider symmetrization. By this reduction, the number of independent elements
at mth order becomes 2m+ 1. The reduced elements are summarized in table 1.

We write this reduction operator as P and the inverse operator (recovery operator)
as Q. The explicit forms of P and Q are given in Appendix B. By these operators,

irreducible moments Û and F̂ are related as

Û =P·M·Q · F̂, (2.40)

which we call the irreducible generalized mobility problem. The procedure to calculate
(2.40) is discussed in § 2.4 and the application of the boundary conditions to it is
discussed in § 2.5.
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2.4. Truncation

The truncation implicitly introduced in (2.3) should be considered in the irreducible
form (2.40) where the independent elements are explicitly specified; we introduce the

order of truncation p as the maximum order of Û and F̂ in (2.40).

Equation (2.40) is calculated using the following six-step procedure for particles
α = 1, . . . , N where we write the order of truncation p explicitly:

(i) Recover the force moments F from the irreducible force moments F̂ as the
input by 

F(0)

...

F(p)

F(p+1)

F(p+2)

 (α) =


Q(0,0) · · · Q(0,p)

...
. . .

...

Q(p,0) · · · Q(p,p)

Q(p+1,0) · · · Q(p+1,p)

Q(p+2,0) · · · Q(p+2,p)

 ·
 F̂

(0)

...

F̂(p)

 (α). (2.41)

(ii) Calculate the non-self-part of the velocity derivatives V′ from F by
V′(0)

...

V′(p+2)

 (α) =
∑
β 6=α


K(0,0) · · · K(0,p+2)

...
. . .

...

K(p+2,0) · · · K(p+2,p+2)

 (xα − yβ) ·


F(0)

...

F(p+2)

 (β),

(2.42)
where

K(n,m)
i,l···;j,k···(r) =

1

n!
[∇nl...J(m)

ij,k...](r) =
1

8πµ

1

n!

1

m!
[∇nl...(−∇)mk...Jij](r). (2.43)

(iii) Convert the velocity derivatives V′ to the velocity moments U′ by (2.28) as


U′(0)

...

U′(p)

 (α) =


D(0,0) · · · D(0,p) D(0,p+1) D(0,p+2)

...
. . .

...
...

...

D(p,0) · · · D(p,p+2) D(p,p+1) D(p,p+2)

 ·


V′(0)

...

V′(p)
V′(p+1)

V′(p+2)


(α),

(2.44)
where

D(n,m) =
an+m

4π

∫
|r̂|=1

dS(r̂)r̂n+m. (2.45)

(iv) Calculate the self-part of the velocity moment Us by
Us(0)

...

Us(p)

 (α) =


Ms(0,0) · · · Ms(0,p)

...
. . .

...

Ms(p,0) · · · Ms(p,p)

 ·

F(0)

...

F(p)

 (α), (2.46)

where Ms is given by (2.22).
(v) Calculate the velocity moments U summing the self-part and the non-self-part
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as 
U(0)

...

U(p)

 (α) =


Us(0)

...

Us(p)

 (α) +


U′(0)

...

U′(p)

 (α). (2.47)

(vi) Reduce the velocity moments U into Û as
Û(0)

...

Û(p)

 (α) =


P(0,0) · · · P(0,p)

...
. . .

...

P(p,0) · · · P(p,p)

 ·

U(0)

...

U(p)

 (α). (2.48)

The above six-step procedure can be recognised as a subroutine of (2.40) which has

the irreducible force moment F̂ as the input and returns the irreducible velocity

moment Û as output.

In the Stokesian Dynamics method, three types of truncation –F , FT and FTS
versions – are presented. The F version corresponds to the truncation p = 0 where the
generalized mobility matrix relates the force F to the translational velocity U . In the
FT version, the torque T that is the asymmetric part of the first-order force moments
is also taken into account and the corresponding angular velocity Ω is considered. In
the FTS version, the stresslet S that is the remnant symmetric part of the first-order
force moments and the corresponding rate of strain E are considered, corresponding
to the truncation of p = 1. The formulation in this paper is completely equivalent to
that in Durlofsky et al. (1987) up to the FTS version.

We note that even in the truncation at order p of F̂ and Û in (2.40), we have to
recover the force moments up to the order p+ 2, calculate the velocity derivatives at
order p + 2, and convert them into the velocity moments at the order p. Otherwise,
we would lose the finite-size effect. In fact, even for p = 0, the finite-size effect is
considered as the trace of the second-order derivatives of the Green function and
we obtain the Rotne–Prager tensor as the generalized mobility matrix. Therefore,
the truncation order p′ in (2.3), (2.17), and (2.26), is p + 2; however, the recovered

moments F(p+1) and F(p+2) do not contain the contribution of F̂(p+1) nor F̂(p+2).

2.5. Higher-order versions for rigid particles

From the rigidity of the surface, there are 6N degrees of freedom for rigid particles;
independent variables are force F , torque T , translational velocity U and angular ve-
locity Ω, and the irreducible moments of the velocity with higher orders should vanish.
This means that the higher moments of velocity are prescribed and the corresponding
higher moments of forces are solved for both mobility and resistance problems. The
contracted mobility and resistance matrices which relate the independent variables
for rigid particles have 6N × 6N-dimensions, depend on the order of the truncation
p, and converge to the exact solution as p→ ∞. In linear flows including the rate of
strain, the degrees of freedom are the same as FTS version. We call the former the
FT -contraction and the latter the FTS-contraction.

We denote the lower moments by subscript l which correspond to the relevant
parts (F and T in the FT -contraction and F , T , and S in the FTS-contraction) and
the higher moments by subscript h which could be contracted. Then, we can rewrite
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Figure 1. Scalar functions XA
11(r; p) of the two-body resistance problem for various orders of the

truncation. ‘F ’ and ‘FTS ’ show the corresponding values obtained by the analytical expressions, and
‘Exact’ shows the exact solution by Jeffrey & Onishi (1984). The results by the present formulation
are shown as p = 0, 1, . . . , 7.

(2.40) as [ Ûl

Ûh

]
=

[
M̂ll M̂lh

M̂hl M̂hh

]
·
[ F̂l

F̂h

]
. (2.49)

From the rigidity Ûh = 0, the corresponding force moment F̂h is solved as

F̂h = −(M̂hh)
−1 · M̂hl · F̂l . (2.50)

Therefore, we have the contracted mobility problem as

Ûl = M̂∗(p) · F̂l , (2.51)

where the contracted mobility matrix M̂∗(p) is given by

M̂∗(p) = M̂ll − M̂lh · (M̂hh)
−1 · M̂hl . (2.52)

This matrix depends on the truncation p and is exact as p→ ∞. Its inverse R̂∗(p) =

(M̂∗)−1 is the corresponding contracted resistance matrix which gives the contracted
resistance problem

F̂l = R̂∗(p) · Ûl . (2.53)

The dimensions of M̂∗(p) and R̂∗(p) are 6N × 6N for the FT -contraction and
11N × 11N for the FTS-contraction.

In the calculation of the contracted problems, we do not want to treat the irreducible

mobility matrix M̂ nor its decomposition in (2.49) explicitly. The six-step procedure

in § 2.4 meets this requirement; the procedure to calculate Û from F̂ is sufficient to
solve the linear equations by iterative methods. (Examples of treatments are shown
in Appendix C.)

For the tests of the formulation and the implementation, we solve the two-body
problems and compare them to the exact solution by Jeffrey & Onishi (1984). First,
we calculate the resistance problem for p = 0, 1, . . . , 7. Figure 1 shows one of the
scalar functions in the resistance matrix XA

11(r; p) where r is the distance between
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Figure 2. Errors of a scalar function on two-body problems: (a) the error of resistance functions
XA

11(r; p) from the exact solution XA
11(r; p = ∞) and (b) that of mobility functions xa11(r; p) from a

higher solution xa11(r; p = 8).

the spheres divided by the radius. This shows that the results converge to the exact
solution as p → ∞, and those of p = 0 and p = 1 are completely identical to the
analytical expression in the F version

XA
11(r; 0) =

4r6

4r6 − (3r2 − 2)2
, (2.54)

and that in the FTS version

XA
11(r; 1) =

20r6(−2880 + 2208r2 − 260r4 − 75r6 + 20r10)

2304− 21120r2 + 55600r4 − 90600r6 + 45945r8 − 800r10 − 1800r12 − 900r14 + 400r16
.

(2.55)

To estimate the truncation errors of the formulation quantitatively, we compare the
truncated solutions to the exact solution for resistance problems in figure 2(a), and
the truncated solutions to that with a higher truncation p = 8 for mobility problems
in figure 2(b). We see that for both resistance and mobility problems, the errors are
scaled by r−2(p+2). We note that the errors of the resistance function Y A

11 and the
mobility function ya11 have the same scaling and others have higher orders, so that
the leading error in the formulation is O(r−2(p+2)) for large r.

We can understand the order as follows. We consider the mobility problem first.
On the truncation p, the leading error comes from the contribution of F(p+1) which

would appear in M̂lh · (M̂hh)
−1 · M̂hl with higher truncations. Because the self-part
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which has r0 scaling appears only in M̂hh (and, therefore, its inverse), the leading

error relating to F(p+1) comes from the lowest order in M̂lh and M̂hl that has r−(p+2)

scaling. Therefore, the error in mobility problems is scaled by r−2(p+2). In fact, not

only for mobility problems but also for resistance problems, Ûh is always specified

and F̂h is unknown for rigid particles. Therefore, even in resistance problems, the
truncation error comes from the contribution of F(p+1) and the error on the velocity

moments Ûl has r−2(p+2) scaling. Because the connection with the lowest order from

Ûl to F̂l is in the self-part, the error of resistance problems is also scaled by r−2(p+2).

3. Fast scheme
The bottleneck in the Stokesian Dynamics method is in the inversion of the mobility

matrix which has O(N3) cost of calculations. This calculation appears to introduce the
lubrication correction and also to solve the linear equations as in (2.52). Therefore, we
need to improve the calculation of the linear set of equations to be faster than O(N3).
As suggested by Ichiki & Brady (2001), the application of conjugate-gradient-type
iterative methods is the first step in the improvement. The iterative method for the
Stokesian Dynamics method gives an O(N2) scheme which consists of the calculation
of the dot-product between a mobility matrix and a force moment. This calculation
is the next bottleneck. The fast multipole method, which is a simple extension of the
conventional multipole expansion, is applicable for the calculation and gives an O(N)
scheme.

To eliminate confusion, we note that the terms such as O(N2) and O(N) in this
paper are for the calculation cost under fast convergence of the iterative procedure, or
more precisely, for that of a single iteration. Therefore, if we need a large number of
iterations to solve the problem with the scaling Nα, for example, the total calculation
has an O(N2+α) cost for the O(N2) scheme and an O(N1+α) cost for the O(N) scheme.
Further discussion is given in § 4.

3.1. Iterative method –O(N2) scheme

We summarize what the iterative methods are, and discuss their application to the
current problems. Let us consider a standard form of a linear set of equations,

b = A · x, (3.1)

where a coefficient matrix A and a vector b are given and the vector x is to be
determined. The conjugate-gradient-type iterative method consists only of the calcu-
lation of the dot-product between the coefficient matrix A and an arbitrary vector
y. Therefore, it becomes very efficient when the calculation of A · y is as fast as for
sparse-matrix problems. This also means that even for dense matrices like the current
problems, the method gives the result at the cost of the dot-product calculation under
fast convergence.

Now we consider the linear equation (2.49). For resistance problems, the coefficient

matrix is M̂, the given vector is Û, and the vector to be determined is F̂. Therefore,
we can apply the iterative method directly, giving the calculation of (2.40) by the
six-step procedure in § 2.3. Because all six steps in the calculation could be done at
most with O(N2) cost, the total cost of the calculation would be O(N2). For mobility
problems and for mixed problems where both mobile and fixed particles exist, the
situation is a little different. However, this difference is not crucial and we can also
solve those problems by the iterative method with the same six-step procedure (see
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Appendix C for details). The detailed results on the number of iterations for mobility
and resistance problems are given in § 4.2.

Inclusion of the lubrication correction in the original Stokesian Dynamics method
can be treated as follows. The resistance matrix is approximated by the lubrication
matrix L as (M)−1 +L, where M is the mobility matrix with a certain truncation
as in FTS . The lubrication matrix L could be constructed by the two-body exact
solution of Jeffrey & Onishi (1984). By this approximation for the resistance matrix,
we have

{(M)−1 +L} ·U =F. (3.2)

Multiplying by M on both sides, we obtain the inverse-free equation

(I +M·L) ·U =M·F. (3.3)

This is a modification of the generalized mobility problem (2.19) and a generalized
linear set of equations for U and F. The treatment of the generalized linear set of
equations is shown in Appendix C, where we need two types of dot-products –M·F
and L·U for arbitrary moments U and F. We can utilize the six-step procedure
for the former and we could calculate the latter with an O(N) cost because of the
short-range nature of L. We note that the breakdown of the lubrication correction
in the Stokesian Dynamics method and the empirical prescription to overcome the
breakdown were recently reported by Cichocki, Ekiel-Jeżewska & Wajnryb (1999).
Because this prescription is only on the lubrication matrix L, their correction could
be applied to the current formulation: We do not go into a detailed discussion here.

We next comment briefly on the variety of iterative methods. The generalized
minimum residual method (GMRES) by Saad & Shultz (1986) is widely used, but

it works well only for symmetric matrices. In our problems, the bare matrix M̂ for
higher versions could be slightly non-symmetric because of the reduction. Even in the
FTS version, if we use the vectors with 11 elements for each particle as

t(Ux,Uy,Uz, Ωx, Ωy, Ωz, Exx, Exy, Exz, Eyy, Eyz) (3.4)

and
t(Fx, Fy, Fz, Tx, Ty, Tz, Sxx, Sxy, Sxz, Syy, Syz), (3.5)

the mobility matrix in the original Stokesian Dynamics method also becomes non-

symmetric. While the coefficient matrix is M̂ for resistance problems, it is a certain

composition of the sub-matrices of M̂ for mobility problems (see (C 2) in Appendix C).
For non-symmetric but definite matrices, the method called GPBi-CG by Zhang (1997)
which is a variant of the bi-conjugate gradients stabilized method (BiCGSTAB) by
van der Vorst (1992) would be suitable. We utilize the method in this paper. We do
not go into the details of iterative methods further, but refer to a textbook by Weiss
(1996) where various methods are described.

Before proceeding, we examine the cost of calculation in the six-step procedure to
see where the next bottleneck is. All steps except for (ii) are a calculation for each
particle, and the cost is O(N). On the other hand, the calculation of the step (ii)
contains the summation for N − 1 particles, so that the cost is O(N2), which is the
current bottleneck.

3.2. Fast multipole method –O(N) scheme

In this section, we discuss a further improvement using the fast multiple method
(FMM). FMM was originally developed by Greengard & Rokhlin (1987) for Laplace
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problems in two and three dimensions with a non-adaptive cell structure, and was
then extended to the adaptive one by Carrier, Greengard & Rokhlin (1988). The
application to low-Reynolds-number flows is given by Sangani & Mo (1996) for
periodic boundary conditions.

While the practical aim of this formulation is to construct an O(N) scheme for
a finite number of particles in an unbounded fluid, we would like to implement
the FMM in a simple way; we reformulate it by extending the previous multipole
expansion for a particle to the expansion for a group of particles using the velocity
derivatives. This is the difference of this formulation from both the original FMM and
Sangani & Mo’s formulation; while they use spherical harmonics, we use Cartesian
moments and Cartesian derivatives which consist only of algebraic manipulations.
We only consider the non-adaptive scheme in this paper.

3.2.1. Procedure for the FMM

The next step to improve the O(N2) scheme is in the calculation of step (ii), that is,
(2.42), or its abbreviated form

V′ =K·F, (3.6)

which contains (N − 1) summation for N particles. We note that in this calculation
the force moment F is given as a trial value in the iterative method. The point of
the FMM is that we treat particles as a group both for the β in the force moments
F(β) and for the α in the velocity derivatives V′(α), rather than treat particles
individually.

We introduce a hierarchical cell structure and formulate the calculations between
the levels of the cell structure. The primary cell at level 0 contains all the particles.
At the next level 1, we divide the primary cell into 23 cells called ‘children’. The
division is repeated up to the maximum level lm, where the cells are called ‘leaves’.
All cells except for leaves have eight children and all cells except for the primary
cell have their ‘parent’ cell. In this cell structure, the procedure of the FMM has two
stages – upward-pass and downward-pass. In the upward-pass, we calculate the force
moments from all particles in a cell C

F(C) =
∑
β∈C
SF (xC, xβ) ·F(β), (3.7)

for all cells in all levels where xC is the centre of cell C . The operator SF (x2, x1)
transforms the origin of a force moment from x1 to x2. From the definition of
force moments, SF is obtained by the binomial theorem (see Appendix D.1). In
the downward-pass, we calculate the velocity derivatives in a recursive way. For
this purpose, we define the operator SV (x2, x1) which transforms the position of
the velocity derivatives from x1 to x2. The derivation is straightforward, because
the derivatives at x1 are the coefficients of the Taylor expansion at x1. The detailed
derivation and the explicit form ofSV are given in Appendix D.2. We also introduce
the velocity derivatives of the contributions from the ‘well-separated’ (i.e. not adjacent)
cells of C and C ’s ‘ancestors’ defined by

W(C) =
∑
β /∈NC

K(C, β) ·F(β), (3.8)

where NC is the nearest cell to cell C to maintain a certain accuracy for the expansion.
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The procedure for the FMM consists of the following five steps:
(i) Calculate the force moment for leaves L directly by the definition (3.7) as

F(L) =
∑
β∈L
SF (xL, xβ) ·F(β), (3.9)

where F(β) is a known variable for all particles β.
(ii) Calculate the force moment of a cell P at a level l from its children C at the

level l + 1 as

F(P ) =

8∑
C

SF (xP , xC) ·F(C), (3.10)

where the summation is taken for cells whose parent is P . By this recursive relation,
we can calculate all force moments at the levels from lm − 1 to 2.

(iii) Set all W at the level 1 (at least) to be zero, because the cells at that level
have no well-separated cell.

(iv) Calculate W(C) from the parent’s W(P ) as

W(C) =SV (xC, xP ) ·W(P ) +
∑
WC

K(C,W ) ·F(W ), (3.11)

where WC is a cell which is not NC on the same level as C , and whose parent
is NP ; the second term in the right-hand side is the contribution not included in
W(P ). Figure 3 shows the situation in the two-dimensional case for simplicity. By
this relation, we can calculate W for all cells at the levels from 2 to lm.

(v) Add the contribution from the particles in the near cells, and obtain the velocity
derivatives for particle α as

V′(α) =SV (xα, xL) ·W(L) +
∑

β∈NL,β 6=α
K(α, β) ·F(β). (3.12)

This five-step procedure replaces the direct calculation of (3.6) and gives an O(N)
scheme.

We note that the transformation ofF bySF is exact, and there is no approximation
at steps (i) and (ii). Therefore, the calculated values in the upward-pass are exactly
the same as those from the definition (2.4) for the cells, in principle; this gives a good
test of the programs.

3.2.2. Cost estimation

We estimate the calculation cost of the above non-adaptive FMM scheme. Giving
force moments for all particles as a trial value in the iteration, we can calculate the
velocity derivatives with the following cost for each step:

(i) calculations of (3.9) for leaves L are O(N);
(ii) calculations of (3.10) for cells at the levels from lm − 1 to 2 are O(8nC), where

nC is the number of all cells in the hierarchy;
(iii) clearing of W at level 1 is O(1);
(iv) calculations of (3.11) at the levels from l = 2 to lm are O(nC(1 + nW )), where

nW is the number of well-separated cells for a cell.
(v) calculations of (3.12) for all particles are O(N(1 +nL)), where nL is the number

of particles in a leaf cell.
The cost of step (iii) is negligible for large N. The number of well-separated cells nW
is constant with N. The number of all cells nC and the number of particles in a leaf
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Figure 3. Cell structure in two dimensions. Well-separated cells from cell C are denoted by W and
nearest cells to C including itself are denoted as N. Well-separated cells from C ’s parent cell P are
denoted WP whose children are not W .

cell nL are given as

nC =

lm∑
l=0

8l =
8lm+1 − 1

7
, (3.13)

nL ≈ N

8lm
, (3.14)

where we expect that the configuration is homogeneous in the primary cell. With lm
fixed, the cost of step (v) scaled by N2 dominates for large N. On the other hand, if
we choose lm as

lm ≈ logN, (3.15)

it is expected that nC is O(N) and nL is O(1). Therefore, the costs of steps (ii), (iv)
and (v) are scaled by N, and we could calculate V′ for all particles from given force
moments F with the cost of O(N).

3.2.3. Truncations

The expansion of the surface force density at the particle centre discussed in § 2
and that of the force moments of particles at the centre of a group in the FMM are
independent. As shown in § 2.5, the truncation error at the order p is O(r−2(p+2)). This
means that the accuracy is better for larger r, and the maximum error occurs on the
pair with the smallest separation.

The expansion in the FMM requires a certain condition to obtain good estimations.
For this purpose, we have introduced NC in (3.8) and have defined the cell WC in
(3.11) by NC as follows: WC is at the same level as C; WC ’s parent is NP ; WC is not
NC . These definitions ensure that the well-separated cells of C , those of C ’s ancestors,
and the nearest cell to C completely cover the whole region of the primary cell
without overlaps. The typical definition of NC is the nearest-neighbour cells including
cell C itself, and there are 33 cells at most. Defining ns as the number of cells between
it and the nearest well-separated cell, we can denote this situation as ns = 1. We note
that this is not the only choice. For example, we can define NC as the cells inside the
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Figure 4. The configuration of points for the worst case in the cell structure in three dimensions
for ns = 1. Points C1 and C2 are the centres of the cell with length L and they are well-separated
from each other. Points P1 and P2 are the farthest points in cells C1 and C2 respectively. The ratio

of the distance between P1 and C1 and that between C1 and C2 is
√

3/2(ns + 1).

cubic region centred on C with 5 times the size of C (ns = 2), where NC would be 53

cells and the results in this situation would be more accurate.
Errors on the multipole expansion are characterized by the order of the truncation

and the ratio r/R, where r is the distance between the source and the expansion point,
and R is that between the expansion point and the observation point. In the FMM,
the ratio is controlled by ns as

r

R
6

√
3

2(ns + 1)
. (3.16)

The worst situation for ns = 1 is shown in figure 4. If we truncate the force moments
in (3.8) at the order q, K(n,m) for n + m > q would be negligible, and the maximum
error would be scaled by (

√
3/2(ns + 1))q+1. Therefore, the truncation error in the

FMM is independent of the smallest separation among particles.
To estimate the empirical error in the current scheme, we solve the two-body

resistance problem where the expansion points are selected as in the worst situation
in figure 4. We estimate the relative error in the scalar function XA

11 defined as∣∣∣∣ [XA
11]

FMM(r; p, q, ns)−XA
11(r;∞)

XA
11(r;∞)− 1

∣∣∣∣ , (3.17)

where [XA
11]

FMM(r; p, q, ns) is the result by the O(N) scheme. The unity in the denom-
inator is the single-body contribution. Figure 5 shows the relative errors for p = 1.
For small r the error in XA

11(r; p = 1) dominates, and for large r the error of the
FMM dominates which is independent of r. Figure 6 shows the scaling of the error
at r = 100 with (ns + 1)−(q+1) for various parameters including p = 2, . . . , 5.

The separation of the crossover between these two regimes increases as q and ns
increase. For the standard choice of parameters of ns = 1 and q = 2(p + 2), the
crossover occurs around r = 4 for p = 1; this means that the O(N) scheme gives a
solution equivalent to the O(N2) scheme for relatively dense configurations where the
minimum separation of particles is smaller than r = 4. On the other hand, the O(N)
scheme gives a less accurate solution than the O(N2) scheme for dilute configurations,
because the O(N2) scheme becomes very accurate there.

We note that the expansion in § 2 is conceptually different from the expansion in
the FMM. In (2.42) we take into account K(n,m) for n 6 p + 2 and m 6 p + 2, that
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is, up to K(p+2,p+2). This is because the resultant mobility problem (2.40) must be
well-defined.

4. Results
We put into practice the O(N2) and the O(N) schemes and check the performance.

The calculations are done on a personal computer running the FreeBSD operating
system on dual Pentium III processors of 550 MHz with 1 GB memory. The programs
are compiled by the GNU C compiler optimized for Pentium processors.

4.1. Benchmarks

We started, not by solving the physical problems such as those of mobility (2.51)
or resistance (2.53), but, rather, by calculating (2.40) giving all elements of force
moments. Figure 7 shows the CPU times of the calculation for p = 1. The result
denoted by O(N2) uses the six-step iterative procedure in § 2.4, and the results denoted
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Figure 7. CPU times for a single calculation of (2.40) are shown against the number of particles N.
The truncation order in these calculations is p = 1, equivalent to the FTS version. The truncation
order on the FMM is q = 2(p+ 2), the number of spacing cells is ns = 1, and the maximum levels
are lm = 2, 3, 4 and 5. ‘FTS ’ denotes the original Stokesian Dynamics for a comparison.

by O(N) use the five-step FMM procedure with equations (3.9) to (3.12) for step (ii)
of the iterative procedure. We see that the CPU time of the O(N2) scheme is scaled
by N2. The result denoted by ‘FTS ’ is the calculation with the explicit form of the
mobility matrix given in Durlofsky et al. (1987). The generalization of the truncation
p in the O(N2) scheme adds an extra cost. The reason for the N2 scaling on the
‘FTS ’ scheme is that we did not solve the physical problems nor we did not invert
the matrix. For O(N) schemes with a fixed lm, we see two regions where the CPU
time is almost constant with N and where it is almost scaled by N2. The crossover
occurs where the direct particle-to-particle calculation in step (v) for near cells with
an O(N2) cost dominates the calculation for cells with an O(N0) cost. As suggested
in § 3.2.2, we need to divide the system into finer cells for larger N in the way of
(3.15). In fact, figure 7 shows that the crossover of CPU times for lm occurs around
N ≈ 10lm , and the envelope line for O(N) schemes is almost scaled by N. A similar
behaviour is also observed for higher versions (p > 1).

4.2. Physical problems

Next, we consider physical problems. Figure 8 shows the average sedimentation
velocities for particles placed on a simple cubic lattice with a lattice spacing r = 3
with a constant force applied. In the calculations, the truncation of the FMM is
q = 2(p + 2) and the number of spacing cells is ns = 1. The velocities are all
proportional to N2/3; if the conglomerate of particles is equivalent to a single object
with the same size, the sedimentation velocity would be the ratio of the applied force
scaled by N to the drag coefficient scaled by the linear dimension of the object N1/3.
The differences between the O(N) and O(N2) schemes for each p are the same order
as the error on the O(N2) scheme.

In these physical problems, we need to solve the linear set of equations. By the
iterative method, the total calculation cost is proportional to the number of iterations
ni. For any problem, we need ni times the CPU time for a single calculation of
(2.40) shown in figure 7, because all mobility, resistance, and mixed problems consist
of (2.40) as the core calculation. To observe the convergent behaviour during the
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Problem: Mobility Resistance

Configuration: Simple cubic Random Simple cubic Random

Separation r: 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2

N = 4 3 7 4 11 5 6 19 42
N = 8 3 6 5 10 5 6 30 59
N = 10 5 12 5 14 27 65 27 67
N = 20 5 15 6 11 44 259 40 116
N = 40 5 7 6 9 43 115 56 158
N = 80 6 11 6 7 72 427 69 101
N = 100 6 12 6 7 79 795 76 131
N = 200 5 8 6 7 90 214 114 176
N = 400 5 8 6 118 319 133
N = 800 5 8 6 133 380 171
N = 1000 5 8 6 186 680 202
N = 2000 5 180 200
N = 4000 5 378 289
N = 8000 5 482 412

Table 2. Numbers of iterations for mobility and resistance problems of simple cubic and random
configurations with separations r = 3.0 and 2.2 in FMM code with p = 1, q = 6, and ns = 1 by the
GPBi-CG method under the accuracy ε = 10−6. (Blank entries are not calculated.)

iterations, we calculate mobility and resistance problems for a simple cubic lattice and
a random configuration with separations r = 3.0 and 2.2. The random configurations
are obtained by a uniform random distribution in the cubic region with length rN1/3

excluding the overlaps. Figure 9 shows the residual with the number of iterations in
the GPBi-CG method for N = 200. The convergence for mobility problems are much
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faster than that for resistance problems. Table 2 shows the numbers of iterations for
an accuracy of 10−6. For mobility problems, the number of iterations is independent
of N and the problems are solved with an O(N) cost. On the other hand, for resistance
problems, more iterations are necessary for larger N. Figure 10 shows the numbers
of iterations for resistance problems. For high accuracy ε = 10−6 the number of
iterations increases almost as N1/2, and for low accuracy ε = 10−3 it increases like
logN (or, at lease, slower than N1/2). Therefore, the total cost of the calculation for
resistance problems would be O(N3/2).
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5. Conclusions
In this paper, we have given a formulation of the hydrodynamic interactions for

rigid spherical particles in an unbounded fluid under the Stokes approximation by a
multipole expansion in real space. We have derived the generalized mobility problem
which relates the force moments to the velocity moments with arbitrary orders. In
our formulation, we calculate the velocity moments through the velocity derivatives.
Faxén’s law was used in the original Stokesian Dynamics method and is one of the
reasons for the limitation at the FTS version which is equivalent to the truncation at
the first order in our formulation. We do not utilize Faxén’s law explicitly. However,
the present formulation contains it implicitly; we integrate the disturbance field of
the fluid velocity on the surface of particles for velocity moments, and Batchelor
(1972) did the same in the classical derivation of Faxén’s law. To obtain well-defined
problems, the proper reduction of force and velocity moments is essential; the reduc-
tion is another barrier of the extension of the original Stokesian Dynamics method.
To overcome this barrier, we formulate the scheme not directly with the physical
variables such as forces, torques, stresslets, translational and rotational velocities,
and rate of strains, but with the mathematical variables such as force moments and
velocity moments. Because of the systematic formulation with the proper reduction,
there is no limitation to the FTS , and extensions to higher orders are straightfor-
ward. By this formulation, one of the difficulties in the original Stokesian Dynamics
method has been overcome and the results have been shown up to order p = 7
explicitly.

We have also obtained an improvement in the calculation speed, which is the other
difficulty in the original Stokesian Dynamics method. By the application of an iterative
method to solve the linear set of equations, we have formulated an O(N2) scheme.
Because we calculate the velocity moments through the velocity derivatives, we can
formulate the fast multipole method (FMM) in a simple way as a natural extension of
the conventional multipole expansion. We have obtained an O(N) scheme by the non-
adaptive FMM. Our formulation of the FMM has no harmonics nor trigonometric
functions; this is the difference (and would be the advantage) from the original
formulations by Greengard & Rokhlin (1987) and the application to Stokes flows by
Sangani & Mo (1996).

The performance of these schemes has been tested for a single calculation of the
generalized mobility problem, which appears in each iteration to solve the mobility and
resistance problems. The CPU time for this calculation is either O(N2) or O(N) where
we choose the levels of the non-adaptive cell structure as logN. Real problems have
been calculated by these schemes for particles N = 400 000 at most. We have found
that mobility problems need small and constant iterations and the total calculation
costs are O(N). On the other hand, resistance problems need more iterations and
total calculation costs seem to be scaled by N3/2 with a high accuracy ε = 10−6;
using the O(N2) scheme, the total cost would be O(N5/2) and the original Stokesian
Dynamics method requires a cost of O(N3). It should be noted that we did not apply
any preconditioning techniques on the iterative method and that would be helpful for
this situation.

Using the O(N) scheme, we can examine the detailed hydrodynamic interactions for
a huge agglomerate of particles in a fluid. Fortunately, many interesting phenomena
such as the breakup of falling clusters by Nitsch & Batchelor (1997) and dispersion
by shear flows by Kao & Mason (1975) are mobility problems, and the plain O(N)
scheme is sufficient.
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We avoid discussing the lubrication correction in this paper because of lack of
theoretical justification. Recently, Cichocki et al. (1999) showed a failure of the
original lubrication correction on the three-body problems and gave a modification
without theoretical justification. The present scheme with higher moments would
give the correct interactions not only for two particles but also for three and more
particles, and could give the theoretical background and the correct treatments.

The adaptive version of the FMM was also not discussed in this paper. However,
this would be important for practical studies of the dynamics, because we usually
observe structures or patterns in the systems and the non-adaptive FMM does not
handle such situations well.

The current scheme would be easily applicable to other problems: for the prob-
lems with rigid but non-spherical objects, we need to construct proper moment-
reduction procedures for the geometries; for non-rigid objects, we need to include
the double-layer potential in the integral equation (2.1); and for systems with the
periodic boundary condition, we need to replace the Green function from the
Oseen tensor by the tensor with the Ewald summation (Beenakker 1986 and Brady
et al. 1988). In addition to these hydrodynamic problems, we could extend this
formulation in a straightforward way to problems governed by linear equations
such as Laplace problems, linear elastic problems, gravitational systems, and vortex
dynamics.

The author wishes to thank Professor John F. Brady for guiding him to this work
and helpful discussions and comments on the manuscript. This work was supported
by the Japan Society for the Promotion of Science.

Appendix A. Explicit form of the self-part of the mobility matrix
We discuss the properties of the self-part of the generalized mobility matrix defined

by (2.22). First we prove two properties discussed in § 2.2:
(i) Ms(n,m) is non-zero only when n and m are both odd or both even;
(ii) Ms(n,m) is zero for m > n+ 2.
The derivatives of the Oseen tensorJ(m) have the scalar part proportional to 1/rm+1

and the tensor part a linear combination of r̂n with n = m + 2, m, m − 2, . . . , 1 or 0.
The surface integral of unit tensor r̂n has the following non-zero value:

1

4π

∫
|r̂|=1

dS(r̂)r̂nk... =
(nx − 1)!!(ny − 1)!!(nz − 1)!!

(n+ 1)!!
(A 1)

only if n, nx, ny , and nz are all even, where nx, ny , nz are the number of indices of x,
y, and z in k . . . respectively. This is a simple extension of Kronecker’s delta to higher
rank. In fact,

1

4π

∫
|r̂|=1

dS(r̂)r̂ir̂j =
1

3!!
δij , (A 2)

1

4π

∫
|r̂|=1

dS(r̂)r̂ir̂j r̂k r̂l =
1

5!!
(δijδkl + δikδjl + δilδjk). (A 3)

From these properties, it is found thatMs(n,m) becomes zero if m is odd and n is even
or vice versa; the property (i) has been proven.
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The Oseen tensor Jij defined by (2.2) has the following properties:

∇iJij = 0, (A 4)

∇2Jii = 0, (A 5)

∇2∇2Jij = 0. (A 6)

Let us consider property (ii) on Ms(n,m) with m > n+ 2. From the properties used to
prove property (i), all indices onMs(n,m)

i,l...;j,k... must match each other. We could consider
three matching cases: i and j are matched, i or j is matched with one of k . . ., and
i and j are both matched with l . . . . In the first case, Laplacian ∇2 would appear
from the matching among k . . ., and the matrix becomes zero by (A 5). In the second
case, the matrix also becomes zero by (A 4). In the third case, there are at least four
indices in k . . . to match each other; therefore, the operator ∇2∇2 would appear and
the matrix again becomes zero by (A 6). Because the possible indices are one of the
above three cases, Ms(n,m) with m > n+ 2 are always zero; the property (ii) has been
proven.

As a result, the self-part of the mobility matrix would have the following form:

Ms =



Ms(0,0) 0 0 0 · · ·
0 Ms(1,1) 0 0 · · ·

Ms(2,0) 0 Ms(2,2) 0 · · ·
0 Ms(3,1) 0 Ms(3,3)

. . .

...
...

...
...

. . .


. (A 7)

The explicit forms of Ms(0,0) and Ms(1,1) are given by (2.23) and (2.24) respectively.

Appendix B. Explicit form of the reduction and recovery operators
We show the explicit form of P and Q up to the third order. Although we use

the force moments in the following, the results are also applicable for the velocity
moments.

B.1. Reduction operator P
From the properties of P, the operator is decomposed into small parts as

F̂(0)

F̂(1)

F̂(2)

F̂(3)

...


=



P(0,0) 0 0 0 · · ·
0 P(1,1) 0 0 · · ·
P(2,0) 0 P(2,2) 0 · · ·

0 P(3,1) 0 P(3,3) · · ·
...

...
...

...
. . .


·



F(0)

F(1)

F(2)

F(3)

...


. (B 1)

To write down the explicit forms of the small matrices, we use a symmetric form for
F for simplicity. Only P(1,1) of the small matrices in (B 1) has non-diagonal elements
which relate Fi,k... with different i. Thus we write P(1,1) first. The explicit form of
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P(1,1) is given as

F̂(1)
x,y

F̂(1)
x,z

F̂(1)
y,x

F̂(1)
y,y

F̂(1)
y,z

F̂(1)
z,x

F̂(1)
z,y

F̂(1)
z,z



=P(1,1) ·F(1) =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

−1/3 0 0 0 2/3 0 0 0 −1/3

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

−1/3 0 0 0 −1/3 0 0 0 2/3


·



F(1)
x,x

F(1)
x,y

F(1)
x,z

F(1)
y,x

F(1)
y,y

F(1)
y,z

F(1)
z,x

F(1)
z,y

F(1)
z,z



.

(B 2)
Because the other matrices are essentially independent of the indices i of Fi,k..., we

write matrices only for Fx,k.... The diagonal matrices P(m,m) are just the extraction of
the independent elements from the F. The explicit forms are given as

P(0,0)
x,x = 1, (B 3)



F̂(2)
x,xy

F̂(2)
x,xz

F̂(2)
x,yy

F̂(2)
x,yz

F̂(2)
x,zz


= P(2,2)

x,x ·F(2)
x =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


·



F(2)
x,xx

F(2)
x,xy

F(2)
x,xz

F(2)
x,yy

F(2)
x,yz

F(2)
x,zz


, (B 4)

and



F̂(3)
x,xyy

F̂(3)
x,xyz

F̂(3)
x,xzz

F̂(3)
x,yyy

F̂(3)
x,yyz

F̂(3)
x,yzz

F̂(3)
x,zzz


= P(3,3)

x,x ·F(3)
x =



0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


·



F(3)
x,xxx

F(3)
x,xxy

F(3)
x,xxz

F(3)
x,xyy

F(3)
x,xyz

F(3)
x,xzz

F(3)
x,yyy

F(3)
x,yyz

F(3)
x,yzz

F(3)
x,zzz



.

(B 5)
The off-diagonal matrices showing the subtraction of the traces appear only in the
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lower-half part in (B 1). The explicit forms are given as

F̂(2)
x,xy

F̂(2)
x,xz

F̂(2)
x,yy

F̂(2)
x,yz

F̂(2)
x,zz


= P(2,0)

x,x ·F(0)
x =



0

0

−1/3

0

−1/3


·F(0)

x , (B 6)

and 

F̂(3)
x,xyy

F̂(3)
x,xyz

F̂(3)
x,xzz

F̂(3)
x,yyy

F̂(3)
x,yyz

F̂(3)
x,yzz

F̂(3)
x,zzz


= P(3,1)

x,x ·F(1)
x =



−1/5 0 0

0 0 0

−1/5 0 0

0 −3/5 0

0 0 −1/5

0 −1/5 0

0 0 −3/5


·
 F

(1)
x,x

F(1)
x,y

F(1)
x,z

 . (B 7)

B.2. Recovery operator Q
The recovery operator Q is also decomposed as

F(0)

F(1)

F(2)

F(3)

...


=



Q(0,0) 0 0 0 · · ·
0 Q(1,1) 0 0 · · ·
Q(2,0) 0 Q(2,2) 0 · · ·

0 Q(3,1) 0 Q(3,3) · · ·
...

...
...

...
. . .


·



F̂(0)

F̂(1)

F̂(2)

F̂(3)

...


. (B 8)

As for P, we write Q(1,1) first. The explicit form is given as

F(1)
x,x

F(1)
x,y

F(1)
x,z

F(1)
y,x

F(1)
y,y

F(1)
y,z

F(1)
z,x

F(1)
z,y

F(1)
z,z



= Q(1,1) · F̂(1) =



0 0 0 −1 0 0 0 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



·



F̂(1)
x,y

F̂(1)
x,z

F̂(1)
y,x

F̂(1)
y,y

F̂(1)
y,z

F̂(1)
z,x

F̂(1)
z,y

F̂(1)
z,z



. (B 9)
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The diagonal matrices Q(m,m) are given as

Q(0,0)
x,x = 1, (B 10)

F(2)
x,xx

F(2)
x,xy

F(2)
x,xz

F(2)
x,yy

F(2)
x,yz

F(2)
x,zz


= Q(2,2)

x,x · F̂(2)
x =



0 0 −1 0 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


·



F̂(2)
x,xy

F̂(2)
x,xz

F̂(2)
x,yy

F̂(2)
x,yz

F̂(2)
x,zz


, (B 11)

and



F(3)
x,xxx

F(3)
x,xxy

F(3)
x,xxz

F(3)
x,xyy

F(3)
x,xyz

F(3)
x,xzz

F(3)
x,yyy

F(3)
x,yyz

F(3)
x,yzz

F(3)
x,zzz



= Q(3,3)
x,x · F̂(3)

x =



−1 0 −1 0 0 0 0

0 0 0 −1 0 −1 0

0 0 0 0 −1 0 −1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



·



F̂(3)
x,xyy

F̂(3)
x,xyz

F̂(3)
x,xzz

F̂(3)
x,yyy

F̂(3)
x,yyz

F̂(3)
x,yzz

F̂(3)
x,zzz


.

(B 12)

The off-diagonal matrices are given as



F(2)
x,xx

F(2)
x,xy

F(2)
x,xz

F(2)
x,yy

F(2)
x,yz

F(2)
x,zz


= Q(2,0)

x,x · F̂(0)
x =



1/3

0

0

1/3

0

1/3


· F̂(0)

x , (B 13)
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and 

F(3)
x,xxx

F(3)
x,xxy

F(3)
x,xxz

F(3)
x,xyy

F(3)
x,xyz

F(3)
x,xzz

F(3)
x,yyy

F(3)
x,yyz

F(3)
x,yzz

F(3)
x,zzz



= Q(3,1)
x,x · F̂(1∗)

x =



3/5 0 0

0 1/5 0

0 0 1/5

1/5 0 0

0 0 0

1/5 0 0

0 3/5 0

0 0 1/5

0 1/5 0

0 0 3/5



·


F̂(1∗)

x,x

F̂(1)
x,y

F̂(1)
x,z

 , (B 14)

where F̂(1∗)
x,x = F̂(1)

x,y − F̂(1)
x,z for simplicity.

Appendix C. General remarks on the iterative method
We usually meet the situation for a linear set of equations (3.1) where some

elements of the left-hand-side vector b are unknown and some elements of a vector
in the right-hand side x are given. To clarify the situation, we explicitly write the
equation as (

b

c

)
= A ·

(
x

y

)
, (C 1)

where b and y are given and x and c are unknown. The dimensions of x and b and
those of y and c are the same respectively. We can transform (C 1) to the form (3.1)
by moving the given variables to the left-hand side and the unknown variables to the
right-hand side as (

b

0

)
− A ·

(
0

y

)
= −

(
0

c

)
+ A ·

(
x

0

)
. (C 2)

To solve this problem, first calculate the left-hand-side vector with the dot-product
calculation once, then implement the routine of an iterative method using the sub-
routine to calculate the right-hand side from the input vector t(c, x), which would be
constructed by the subroutine to calculate A · t(x, y) giving y = 0 explicitly.

For the generalized linear set of equations which we meet in the original Stoke-
sian Dynamics method with the lubrication correction, the above treatment is also
applicable. Let us consider the problem where matrices appear on both sides of the
equation as

B ·
(
b

c

)
= A ·

(
x

y

)
, (C 3)

where b and y are given and x and c are unknown as in (C 1). Again we can transform
(C 3) to

B ·
(
b

0

)
− A ·

(
0

y

)
= −B ·

(
0

c

)
+ A ·

(
x

0

)
. (C 4)
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This is the same form as (3.1); the left-hand side consists of the given values only
and the right-hand side can be summarized as the matrix-vector product with the
unknown vector. Although the operation of the dot-product increases, the generalized
linear set of equations is also solved without decomposing the matrices A and B .

Appendix D. The explicit form of the shift operators
D.1. Force moments

We describe the transformations of the origin of moments. We would like to represent
the moments with origin x2 by F(x1). From the definition, the moments with x2 are
given by

F(m)
i,k...(x2) =

∫
dS(y) (y − x2)

m
k...fi(y). (D 1)

Here (y − x2)
m could be written by the linear combination of (y − x1)

i and (x1 − x2)
j

where i+ j = m. By the ‘binomial theorem for three-dimensional vectors’, we are able
to transform F(x1) to F(x2) uniquely. The importance of the binomial theorem for
vectors is their non-commutable property,

aibj 6= biaj . (D 2)

Let us consider the expansion

[(a+ b)n]k... . (D 3)

If we know the n-indices ‘k . . .’, that is, the numbers of x, y, and z are nx, ny , and nz
respectively where nx + ny + nz = n, using the usual (scalar) binomial theorem

(a+ b)n =

n∑
i=0

nCia
ib(n−i), (D 4)

we obtain the expansion as

[(a+ b)n]k... =

nx∑
ix=0

ny∑
iy=0

nz∑
iz=0

nxCix nyCiy nzCiz (ax)
ix(ay)

iy (az)
iz (bx)

jx(by)
jy (bz)

jz , (D 5)

where jx = nx − ix, jy = ny − iy , and jz = nz − iz respectively. The expansion of the
power of the sum of two vectors a and b is straightforward. We just write it down
explicitly for lower powers:

F(0)
i (x2) =F(0)

i (x1), (D 6)

F(1)
i,j (x2) = rjF(0)

i (x1) +F(1)
i,j (x1), (D 7)

F(2)
i,jk(x2) = r2

jkF(0)
i (x1) + rjF(1)

i,k (x1) + rkF(1)
i,j (x1) +F(2)

i,jk(x1), (D 8)

where r = x1 − x2. If the order of F(x1) and F(x2) is the same, they are equivalent,
that is, F(x2) calculated by the definition and by the transformation above are
identical. We denote this transformation by a matrix SF as

F(x2) =SF (x2, x1) ·F(x1). (D 9)

The explicit form of the transformation matrix S for vector (F(0)
i ,F(1)

x,i ,F(1)
y,i ,F(1)

z,i ) is
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written as

SF (x2, x1) =


I 0 0 0

Ax I 0 0

Ay 0 I 0

Az 0 0 I

 , (D 10)

where

Ax =

 rx 0 0

ry 0 0

rz 0 0

 , Ay =

 0 rx 0

0 ry 0

0 rz 0

 , Az =

 0 0 rx

0 0 ry

0 0 rz

 , (D 11)

where r = x1 − x2.

D.2. Velocity derivatives

We describe the transformation of the origin of the velocity derivatives. By the
definition

V(m)
i,k...(x1) =

1

m!
[∇mk...vi](x1), (D 12)

the velocity disturbance at x around x1 is given by

vi(x) =

∞∑
m=0

V(m)
i,k...(x1)(x− x1)

m
k.... (D 13)

From the above equation, we obtain the transformation among the velocity derivatives
as

V(n)
i,l...(x2) =

∞∑
m=n

mCnV(m)
i,k...l...(x1)(x2 − x1)

m−n
k... , (D 14)

or, introducing the operator SV , as

V(x2) =SV (x2, x1) ·V(x1). (D 15)

The explicit form of SV is given by

V(0)

V(1)

V(2)

V(3)

...


(x2) =



I r�(1) 2rr�(2) 3rrr�(3) · · ·
0 I 2r�(1) 3rr�(2) · · ·
0 0 I 3r�(1) · · ·
0 0 0 I · · ·
...

...
...

...
. . .





V(0)

V(1)

V(2)

V(3)

...


(x1), (D 16)

where r = x2 − x1, and �(n) denotes the n-fold contraction such as

(A�(2) B)k...,l... =Aijk...Bijl... . (D 17)
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Cichocki, B., Ekiel-Jeżewska, M. L. & Wajnryb, E. 1999 Lubrication corrections for three-particle
contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111,
3265–3273.

Damour, T. & Iyer, B. R. 1991 Multipole analysis for electromagnetism and linearized gravity with
irreducible Cartesian tensors. Phys. Rev. D 43, 3259–3272.

Durlofsky, L., Brady, J. F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting
particles. J. Fluid Mech. 180, 21–49.

Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 A new technique for treating multiparticle
slow viscous flow: axisymmetric flow past spheres and spheroids. J. Fluid Mech. 50, 705–740.

Greengard, L. & Rokhlin, V. 1987 A fast algorithm for particle simulations. J. Comput. Phys. 73,
325–348.

Ichiki, K. & Brady, J. F. 2001 Many-body effects and matrix-inversion in low-Reynolds-number
hydrodynamics. Phys. Fluids 13, 350–353.

Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two
unequal spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261–290.

Kao, S. & Mason, S. G. 1975 Dispersion of particles by shear. Nature 253, 619–621.

Ladd, A. J. C. 1988 Hydrodynamic interactions in a suspension of spherical particles. J. Chem.
Phys. 88, 5051–5063.

Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, 2nd Edn.
Gordon & Breach.

Mazur, P. & van Saarloos, W. 1982 Many-sphere hydrodynamic interactions and mobilities in a
suspension. Physica A 115, 21–57.

Mo, G. & Sangani, A. S. 1994 A method for computing Stokes flow interactions among spherical
objects and its application to suspensions of drops and porous particles. Phys. Fluids 6,
1637–1652.

Nitsche, J. M. & Batchelor, G. K. 1997 Break-up of a falling drop containing dispersed particles.
J. Fluid Mech. 340, 161–175.

Saad, Y. & Shultz, M. H. 1986 GMRES – a generalized minimal residual algorithm for solving
nonsymmetric linear-systems. SIAM J. Sci. Statist. Comput. 7, 856–869.

Sangani, A. S. & Mo, G. 1996 An O(N) algorithm for Stokes and Laplace interactions of particles.
Phys. Fluids 8, 1990–2010.

van der Vorst, H. A. 1992 BI-CGSTAB: A fast and smoothly converging variant of BI-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644.

Weiss, R. 1996 Parameter-free Iterative Linear Solvers. Berlin: Akademie Verlag.

Zhang, S. L. 1997 GPBi-CG: Generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551.


